Glucose uptake in brown fat cells is dependent on mTOR complex 2-promoted GLUT1 translocation.

Abstract

International audienceBrown adipose tissue is the primary site for thermogenesis and can consume, in addition to free fatty acids, a very high amount of glucose from the blood, which can both acutely and chronically affect glucose homeostasis. Here, we show that mechanistic target of rapamycin (mTOR) complex 2 has a novel role in β3-adrenoceptor-stimulated glucose uptake in brown adipose tissue. We show that β3-adrenoceptors stimulate glucose uptake in brown adipose tissue via a signaling pathway that is comprised of two different parts: one part dependent on cAMP-mediated increases in GLUT1 transcription and de novo synthesis of GLUT1 and another part dependent on mTOR complex 2-stimulated translocation of newly synthesized GLUT1 to the plasma membrane, leading to increased glucose uptake. Both parts are essential for β3-adrenoceptor-stimulated glucose uptake. Importantly, the effect of β3-adrenoceptor on mTOR complex 2 is independent of the classical insulin-phosphoinositide 3-kinase-Akt pathway, highlighting a novel mechanism of mTOR complex 2 activation

    Similar works