research

Temperature and strain rate dependence of microstructural evolution and dynamic mechanical behavior in nanocrystalline Ti

Abstract

The mechanical behavior of commercial purity titanium with a nanocrystalline (NC) grain size was investigated using split Hopkinson pressure bar tests at high strain rates and over a range of temperatures. The study was accompanied by detailed microstructural investigations before and after compression testing. The results show that rotary dynamic recrystallization operates during compressive deformation at strain rates of ~3000 and ~4500 s?1 at temperatures from 298 to 573 K but cells form at 673 K. The dynamic mechanical behavior of NC Ti shows a strong dependence on temperature and strain rate such that the flow stress and the strain hardening rate both increase with increasing strain and decreasing temperature. A constitutive equation is derived to relate the flow stress to the temperature, strain rate and true strain and to predict the yield strength and the peak stress of NC Ti subjected to dynamic deformation at elevated temperatures

    Similar works

    Full text

    thumbnail-image