Concentration‐dependent optical‐absorption coefficient in n‐type GaAs

Abstract

The doping-dependent, near-band-edge optical-absorption coefficient CY(h v) was deduced from optical transmission measurements in n-type GaAs thin films. The selenium-doped films were grown by metalorganic chemical-vapor deposition and do ed to produce room-temperature electron concentrations from 1.3 x 10” to 3.8X 1018 cm- P . The transmission measurements covered photon energies between 1.35 and 1.7 eV and were performed on double heterostructures with the substrate removed by selective etching. The results show good qualitative agreement with previous studies and good quantitative agreement, except for the heavily doped samples. For na=3.8 X 10” cme3, a( 1.42 eV\u3e is approximately four times that reported by previous workers. Secondary-ion-mass spectrometry measurements on flms grown under differing conditions demonstrate that a(hv) is sensitive to electrically inactive dopants and supports the hypothesis that precipitates or compensation influenced previous measurements. These comprehensive results on high-quality, uncompensated material should prove useful for fundamental studies of optical transitions in n-type GaAs as well as for modeling optoelectronic devices

    Similar works