CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Detection and characterisation of Complement protein activity in bovine milk by bactericidal sequestration assay
Authors
Gerald F Fitzgerald
Philip Kelly
Susan Maye
CATHERINE STANTON
Publication date
29 June 2015
Publisher
'Cambridge University Press (CUP)'
Doi
Abstract
Susan Maye is in receipt of a Teagasc Walsh Fellowship. Financial support by the Department of Agriculture, Food and the Marine is gratefully acknowledged.Copyright © Proprietors of Journal of Dairy Research 2015 (Institute of Food Research and the Hannah Research Institute)peer-reviewedWhile the Complement protein system in human milk is well characterised, there is little information on its presence and activity in bovine milk. Complement forms part of the innate immune system, hence the importance of its contribution during milk ingestion to the overall defences of the neonate. A bactericidal sequestration assay, featuring a Complement sensitive strain, Escherichia coli 0111, originally used to characterise Complement activity in human milk was successfully applied to freshly drawn bovine milk samples, thus, providing an opportunity to compare Complement activities in both human and bovine milks. Although not identical in response, the levels of Complement activity in bovine milk were found to be closely comparable with that of human milk. Differential counts of Esch. coli 0111 after 2 h incubation were 6·20 and 6·06 log CFU/ml, for raw bovine and human milks, respectively – the lower value representing a stronger Complement response. Exposing bovine milk to a range of thermal treatments e.g. 42, 45, 65, 72, 85 or 95 °C for 10 min, progressively inhibited Complement activity by increasing temperature, thus confirming the heat labile nature of this immune protein system. Low level Complement activity was found, however, in 65 and 72 °C heat treated samples and in retailed pasteurised milk which highlights the outer limit to which high temperature, short time (HTST) industrial thermal processes should be applied if retention of activity is a priority. Concentration of Complement in the fat phase was evident following cream separation, and this was also reflected in the further loss of activity recorded in low fat variants of retailed pasteurised milk. Laboratory-based churning of the cream during simulated buttermaking generated an aqueous (buttermilk) phase with higher levels of Complement activity than the fat phase, thus pointing to a likely association with the milk fat globule membrane (MFGM) layer.Department of Agriculture, Food and the Marin
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1017%2Fs0022029915...
Last time updated on 26/02/2019
T-Stór
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:t-stor.teagasc.ie:11019/10...
Last time updated on 23/08/2016
Irish Universities
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 30/12/2017