Prototyping Closed Loop Physiologic Control With the Medical Device Coordination Framework

Abstract

Medical devices historically have been monolithic units – developed, validated, and approved by regulatory authorities as standalone entities. Despite the fact that modern medical devices increasingly incorporate connectivity mechanisms that enable device data to be streamed to electronic health records and displays that aggregate data from multiple devices, connectivity is not being leveraged to allow an integrated collection of devices to work together as a single system to automate clinical work flows. This is due, in part, to current regulatory policies which prohibit such interactions due to safety concerns. In previous work, we proposed an open source middleware framework and an accompanying model-based development environment that could be used to quickly implement medical device coordination applications – enabling a “systems of systems” paradigm for medical devices. Such a paradigm shows great promise for supporting many applications that increase both the safety and effectiveness of medical care as well as the efficiency of clinical workflows. In this paper, we report on our experience using our Medical Device Coordination Framework (MDCF) to carry out a rapid prototyping of one such application – a multi-device medical system that uses closed loop physiologic control to a affect better patient outcomes for Patient Controlled Anelgesic (PCA) pumps

    Similar works