Embedded Virtual Machines for Wireless Industrial Automation (Demo)

Abstract

The factory of the future is the Wireless Factory - fully programmable, nimble and adaptive to planned mode changes and unplanned faults. Today automotive assembly lines loose over $22,000 per minute of downtime. The systems are rigid, difficult to maintain, operate and diagnose. Our goal is to demonstrate the initial architecture and protocols for all-wireless factory control automation. Embedded wireless networks have largely focused on open-loop sensing and monitoring. To address actuation in closed-loop wireless control systems there is a strong need to re-think the communication architectures and protocols for reliability, coordination and control. As the links, nodes and topology of wireless systems are inherently unreliable, such time-critical and safety-critical applications require programming abstractions where the tasks are assigned to the sensors, actuators and controllers as a single component rather than statically mapping a set of tasks to a specific physical node at design time. To this end, we introduce the Embedded Virtual Machine (EVM), a powerful and flexible runtime system where virtual components and their properties are maintained across node boundaries. EVM-based algorithms introduce new capabilities such as provably minimal graceful degradation during sensor/actuator failure, adaptation to mode changes and runtime optimization of resource consumption. Through the design of a micro-factory we aim to demonstrate the capabilities of EVM-based wireless networks

    Similar works