An embedded boundary integral solver for the stokes equations

Abstract

We present a new method for the solution of the Stokes equations. Our goal is to develop a robust and scalable methodology for two and three dimensional, moving-boundary, flow simulations. Our method is based on Anita Mayo\u27s method for the Poisson\u27s equation: “The Fast Solution of Poisson\u27s and the Biharmonic Equations on Irregular Regions”, SIAM J. Num. Anal., 21 (1984), pp. 285– 299. We embed the domain in a rectangular domain, for which fast solvers are available, and we impose the boundary conditions as interface (jump) conditions on the velocities and tractions. We use an indirect boundary integral formulation for the homogeneous Stokes equations to compute the jumps. The resulting integral equations are discretized by Nystrom\u27s method. The rectangular domain problem is discretized by finite elements for a velocity-pressure formulation with equal order interpolation bilinear elements (Q1-Q1). Stabilization is used to circumvent the inf-sup condition for the pressure space. For the integral equations, fast matrix vector multiplications are achieved via a NlogN algorithm based on a block representation of the discrete integral operator, combined with (kernel independent) singular value decomposition to sparsify low-rank blocks. Our code is built on top of PETSc, an MPI based parallel linear algebra library. The regular grid solver is a Krylov method (Conjugate Residuals) combined with an optimal two-level Schwartz-preconditioner. For the integral equation we use GMRES. We have tested our algorithm on several numerical examples and we have observed optimal convergence rates

    Similar works