Data driven POS tagging has achieved good performance for English, but can still lag behind linguistic rule based taggers for morphologically complex languages, such as Icelandic. We extend a statistical tagger to handle fine grained tagsets and improve over the best Icelandic POS tagger. Additionally, we develop a case tagger for non-local case and gender decisions. An error analysis of our system suggests future directions. This paper presents further results and analysis to the original work (Dredze and Wallenberg, 2008)