We present an explicit finite-difference scheme for direct simulation of the motion of solid particles in a fluid. The method is based on a second order MacCormack finite-difference solver for the flow, and Newton’s equations for the particles. The fluid is modeled with fully compressible mass and momentum balances; the technique is intended to be used at moderate particle Reynolds number. Several examples are shown, including a single stationary circular particle in a uniform flow between two moving walls, a particle dropped in a stationary fluid at particle Reynolds number of 20, the drafting, kissing, and tumbling of two particles, and 100 particles falling in a closed box