Microstructure of Set-Style Yoghurt Manufactured from Cow\u27s Milk Fortified by Various Methods

Abstract

Five different batches of skim milk were prepared and fortified by the addition of skim milk powder (SMP) or sodium caseinate (Na-cn) or by concentration using a vacuum evaporator (EV), ultrafiltration (UF), or reverse osmosis (RO) to contain similar levels of protein (5.0-5.5%). Yoghurts were made by inoculating the milks with one of 3 commercial yoghurt starter cultures and by incubating the mixes at 42°C for 2.5 h. The following factors were found in this study to affect firmness of the yoghurts: (a) Lactic acid production (acidity) - Yoghurts containing 1.02% of lactic acid or more (pH 4.54 or less) were firmer than yoghurts having a lower lactic acid content and a higher pH value. (b) Casein to non-casein protein ratio - Firmer yoghurts were obtai ned at a ratio of 4.62 than at 3.20-3.4D. Microstructure of the yoghurts as examined by electron microscopy was affected by the method of fortification of the milk. SMP-fortified yoghurt had the most dense matrix composed of short micellar chains and small micellar clusters. This was the softest yoghurt. Na-co-fortified yoghurt had the most open matrix consisting of robust casein particle chains and large clusters. This was the firmest yoghurt. Appendages or spikes formed by heatdenatured B-lactoglobulin or by a complex consisting of B-lactoglobulin and K-casein were attached to casein micelles in all the yoghurts except the one fortified by the addition of Na-cn. Void spaces (cavities) around lactic acid bacteria and filaments of mucous or slimy material produced by a ropy bacterial culture and attaching the bacterial cells to the protein matrix were additional microstructural features observed in the yoghurts under study

    Similar works