CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions
Authors
Raghavendra G. Amachawadi
Silpak Biswas
+3 more
Zachary DeMars
David G. Renter
Victoriya V. Volkova
Publication date
1 January 2016
Publisher
'Public Library of Science (PLoS)'
Doi
View
on
PubMed
Abstract
Citation: DeMars, Z., Biswas, S., Amachawadi, R. G., Renter, D. G., & Volkova, V. V. (2016). Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions. Plos One, 11(5). doi:10.1371/journal.pone.0155599Antimicrobial treatments result in the host's enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-TestR following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: ?-lactams (specifically, ampicillin and ceftriaxone E-Test1 ), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/ trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n?30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment suggested that during first days in anaerobic conditions the susceptibility changes with time. The results demonstrate that assessing effects of antimicrobial treatments on resistance in the host's enteric bacteria that are Gram negative facultative Anaerobe Bacilli requires data on the bacterial antimicrobial susceptibility in the conditions resembling those in the intestine. © 2016 DeMars et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Directory of Open Access Journals
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:doaj.org/article:90050f436...
Last time updated on 13/10/2017
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1371%2Fjournal.pon...
Last time updated on 05/06/2019
K-State Research Exchange
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:krex.k-state.edu:2097/3406...
Last time updated on 25/02/2017