Ultra-fast X-ray Diffraction of Metastable Structures During Hydrogen Crystallization

Abstract

Big discoveries can come from small element, and hydrogen is the simplest element in the universe, but its property has been intensely studied in recent years. Hydrogen has a notably complex phase diagram, and its application is important to many scientific fields, such as fundamental physics, inertial confinement fusion, planetary sciences, etc. While sophisticated static observations have probed its structure at extremely high pressures, the higher-temperature studies applying dynamic compression is confined to optical measurement methods. In this project over the summer, I will present spectrally resolved x-ray scattering assessment from plasmons in dynamic compressed deuterium. Collaborating Compton scattering and velocity interferometry, we can measure shock pressure and mass density, which allowed us to extract ionization state as a function of compression. The onset of ionization occurs close in pressure to where density functional theory-molecular dynamics (DFT-MD) simulation displays molecular dissociation, proposing hydrogen progress from a molecular, insulating fluid to a conducting state despite going through an intermediate atomic phase

    Similar works