thesis

Solar energy harvesting and software enhancements for autonomous wireless smart sensor networks

Abstract

Civil infrastructure is the backbone of modern society, and maintaining said infrastructure is critical in maintaining healthy society. Wireless smart sensors (WSSs) provide a means to effectively monitor the performance of buildings and bridges to improve maintenance practices, minimize the costs of repair, and improve public safety through a process called structural health monitoring (SHM). WSSs, traditionally powered by batteries, are limited in the length of time they can operate autonomously. The frequent need to change batteries in the networks can drive up maintenance costs and diminish the advantage first realized with WSSs. Efforts have been made to minimize the power consumption of WSSs operating in SHM networks, but there have been a limited number of new power supply options, such as energy harvesting, used in full-scale SHM applications. This research develops a solar energy harvesting system to provide power to Imote2 WSS platform and increase the long-term autonomy of wireless smart sensor networks (WSSNs). The approach is validated on a cable stayed bridge in South Korea. Additionally, software enhancements are introduced to allow sensor data to be stored in non-volatile memory, potentially further enhancing the efficacy of WSSNs. This research has resulted in greater overall autonomy of WSSNs

    Similar works