Evolution of IgE responses to multiple allergen components throughout childhood

Abstract

BACKGROUND: There is a paucity of information about longitudinal patterns of IgE responses to allergenic proteins (components) from multiple sources. OBJECTIVE: To investigate temporal patterns of component-specific IgE responses from infancy to adolescence, and their relationship with allergic diseases. METHODS: In a population-based birth cohort, we measured IgE to 112 components at 6 follow-ups during childhood. We used a Bayesian method to discover cross-sectional sensitization patterns and their longitudinal trajectories, and related these patterns to asthma and rhinitis in adolescence. RESULTS: We identified one sensitization cluster at age one, 3 at age three, 4 at ages five and eight, 5 at age 11, and six at age 16 years. "Broad" cluster was the only cluster present at every follow-up, comprising of components from multiple sources. "Dust mite" cluster formed at age three and remained unchanged to adolescence. At age three, a single-component "Grass" cluster emerged, which at age five absorbed additional grass components and Fel d 1 to form the "Grass/cat" cluster. Two new clusters formed at age 11: "Cat" cluster and "PR-10/profilin" (which divided at age 16 into "PR-10" and "Profilin"). The strongest contemporaneous associate of asthma at age 16 years was sensitization to "Dust mite" cluster (OR [95% CI]: 2.6 [1.2-6.1], P<0.05), but the strongest early-life predictor of subsequent asthma was sensitization to "Grass/cat" cluster (3.5 [1.6-7.4], P<0.01). CONCLUSIONS: We describe the architecture of the evolution of IgE responses to multiple allergen components throughout childhood, which may facilitate development of better diagnostic and prognostic biomarkers for allergic diseases

    Similar works