Multi-scale modelling and optimisation of sustainable chemical processes

Abstract

This dissertation explores the process modelling and optimisation of chemical processes under sustainability criteria. Resting on process systems engineering techniques combined with life cycle assessment (LCA), we present implementation strategies to improve flowsheet performance and reduce environmental impacts from early design stages. We first address the relevance of sustainability assessments in the sector and present process and environmental modelling techniques available. Under the observation that chemical processes are subject to market, technical, and environmental fluctuations, we next present an approach to account for these uncertainties. Process optimisation is then tackled by combining surrogate modelling, objective-reduction, and multi-criteria decision analysis tools. The framework proved the enhancement of the assessments by reducing the use of computational resources and allowing the ranking of optimal alternatives based on the concept of efficiency. We finally introduce a scheme to assess sustainable performance at a multi-scale level, from catalysis development to planet implications. This approach aims to provide insights about the role of catalysis and establish priorities for process development, while also introducing absolute sustainability metrics via the concept of ‘Planetary boundaries’. Ultimately, this allows a clear view of the impact that a process incurs in the current and future status of the Earth. The capabilities of the methods developed are tested in relevant applications that address challenges in the sector to attain sustainable performance. We present how concepts like circular economy, waste valorisation, and renewable raw materials can certainly bring benefits to the industry compared to their fossil-based alternatives. However, we also show that the development of new processes and technologies is very likely to shift environmental impacts from one category to another, concluding that cross-sectorial cooperation will become essential to meet sustainability targets, such as those determined by the Sustainable Development Goals.Open Acces

    Similar works