The Linked Open Data (LOD) cloud changes frequently. Recent approaches focus mainly on quantifying the changes that occur in the LOD cloud by comparing two snapshots of a linked dataset captured at two different points in time. These change metrics are able to measure absolute changes between these two snapshots. However, they cannot determine the dynamics of a dataset over a period of time, i.e., the intensity of how the data evolved in this period. In this paper, we present a general framework to analyse the dynamics of linked datasets within a given time interval. We propose a function to measure the dynamics of a LOD dataset, which is defined as the aggregation of absolute, infinitesimal changes, provided by change metrics. Our method can be parametrised to incorporate and make use of existing change metrics. Furthermore, our framework enables the use of different decay functions within the dynamics computation for different weights on changes depending on when they occurred in the observed time interval. We apply our framework to conduct an investigation on the dynamics of selected LOD datasets. We apply our analysis on a large-scale LOD dataset that is obtained from the LOD cloud by weekly crawls over more than a year. Finally, we discuss the benefits and potential applications of our dynamics function in a real world scenario