unknown

Precise and accurate isotope fractionation factors (α17^{17}O, α18^{18}O and αD) for water and CaSO4_{4}·2H2_{2}O (gypsum)

Abstract

Gypsum (CaSO4_{4}·2H2_{2}O) is a hydrated mineral containing crystallization water, also known as gypsum hydration water (GHW). We determined isotope fractionation factors (α17^{17}O, α18^{18}O and αD) between GHW and free water of the mother solution in the temperature range from 3 °C to 55 °C at different salinities and precipitation rates. The hydrogen isotope fractionation factor (αDgypsumwater_{gypsum-water}) increases by 0.0001 units per °C between 3 °C and 55 °C and salinities <150 g/L of NaCl. The αDgypsumwater_{gypsum-water} is 0.9812 ± 0.0007 at 20 °C, which is in good agreement with previous estimates of 0.981 ± 0.001 at the same temperature. The α18^{18}Ogypsumwater_{gypsum-water} slightly decreases with temperature by 0.00001 per °C, which is not significant over much of the temperature range considered for paleoclimate applications. Between 3 °C and 55 °C, α18^{18}Ogypsumwater_{gypsum-water} averages 1.0035 ± 0.0002. This value is more precise than that reported previously (e.g. 1.0041 ± 0.0004 at 25 °C) and lower than the commonly accepted value of 1.004. We found that NaCl concentrations below 150 g/L do not significantly affect α18^{18}Ogypsumwater_{gypsum-water}, but αDgypsum-water increases linearly with NaCl concentrations even at relatively low salinities, suggesting a salt correction is necessary for gypsum formed from brines. Unlike oxygen isotopes, the αDgypsumwater_{gypsum-water} is affected by kinetic effects that increase with gypsum precipitation rate. As expected, the relationship of the fractionation factors for 17^{17}O and18^{18}8O follows the theoretical mass-dependent fractionation on Earth (θ\textit{θ} = 0.529 ± 0.001). We provide specific examples of the importance of using the revised fractionation factors when calculating the isotopic composition of the fluids.This research was supported by the ERC WIHM Project [#339694] to DAH

    Similar works