research

Intrinsic dead layer effects in relaxed epitaxial BaTiO3 thin film grown by pulsed laser deposition

Abstract

MEM acknowledges a support from the Region of Haut de France and IPR the Ministry of Education and Science of the Russian Federation (research project 3.1649.2017/PP).Epitaxial BaTiO3 (BT) thin film of about 400 nm thickness was grown on LaSr0.5Co0.5O3 (LSCO) coated (001)MgO using pulsed laser deposition. Ferroelectric properties of the BT thin film in Pt/BT/LSCO/MgO heterostructure capacitor configuration were investigated. Dynamic P-E hysteresis loops at room temperature showed ferroelectric behavior with Ps = 32 μC/cm2, Pr = 14 μC/cm2 and EC = 65 kV/cm. Static C-V measurements confirmed reversible switching with a coercive field EC = 15 kV/cm. Basing on a model taking into account an interface dead-layer we show that the capacitance-voltage “butterfly” loops imply only 25% switching of dipoles that inferred from dynamic polarization-field loops (~ 4 and ~ 16 kV/cm, respectively). Dielectric permittivity as a function of temperature revealed a first-order ferroelectric-to-paraelectric (FE-PE) phase transition in the BT film characterized by a maximum at TC ~ 130 °C. The very large (~ 126 K at 1 kHz) difference between TC and the extrapolated Curie-Weiss temperature T0 is attributed to the dead-layer effects.PostprintPeer reviewe

    Similar works