Abstract

Electrons in InAs/GaAs quantum dots are strong candidates for qubits due to quantum confinement of the spin ½ system. However, electrons couple with nearby nuclear spins and the fluctuating electrostatic environment, these impose an undesired bottleneck on the performance of a quantum spin device. We show that the fluctuating charge and spin environment may be circumvented to an extent. Compared to InAs/GaAs quantum dots, two-dimensional materials may be used to minimise nuclear spin noise; combined with careful sample design a low-decoherence platform is envisioned

    Similar works