research

Managing renewable intermittency in smart grid:use of residential hot water heaters as a form of energy storage

Abstract

This paper discusses a novel wind generation balancing technique to improve renewable energy integration to the system. Novel individual hot water heater controllers were modelled with the ability to forecast and look ahead the required energy, while responding to electricity grid imbalance. Artificial intelligence and machine learning techniques were used to learn and predict energy usage. In this research wind power data was used in most cases to represent the supply side, where focus was on the actual generation deviation from plan. It proved to be possible to balance the generation and increase system efficiency while maintaining user satisfaction. The methods developed in this research are not limited to wind power balancing and can also be used with any other type of renewable generation source

    Similar works