Indicators of soil quality - Physical properties (SP1611). Final report to Defra

Abstract

The condition of soil determines its ability to carry out diverse and essential functions that support human health and wellbeing. These functions (or ecosystem goods and services) include producing food, storing water, carbon and nutrients, protecting our buried cultural heritage and providing a habitat for flora and fauna. Therefore, it is important to know the condition or quality of soil and how this changes over space and time in response to natural factors (such as changing weather patterns) or to land management practices. Meaningful soil quality indicators (SQIs), based on physical, biological or chemical soil properties are needed for the successful implementation of a soil monitoring programme in England and Wales. Soil monitoring can provide decision makers with important data to target, implement and evaluate policies aimed at safeguarding UK soil resources. Indeed, the absence of agreed and well-defined SQIs is likely to be a barrier to the development of soil protection policy and its subsequent implementation. This project assessed whether physical soil properties can be used to indicate the quality of soil in terms of its capacity to deliver ecosystem goods and services. The 22 direct (e.g. bulk density) and 4 indirect (e.g. catchment hydrograph) physical SQIs defined by Loveland and Thompson (2002) and subsequently evaluated by Merrington et al. (2006), were re-visited in the light of new scientific evidence, recent policy drivers and developments in sampling techniques and monitoring methodologies (Work Package 1). The culmination of these efforts resulted in 38 direct and 4 indirect soil physical properties being identified as potential SQIs. Based on the gathered evidence, a ‘logical sieve’ was used to assess the relative strengths, weaknesses and suitability of each potential physical SQI for national scale soil monitoring. Each soil physical property was scored in terms of: soil function – does the candidate SQI reflect all soil function(s)? land use - does the candidate SQI apply to all land uses found nationally? soil degradation - can the candidate SQI express soil degradation processes? does the candidate SQI meet the challenge criteria used by Merrington et al. (2006)?This approach enabled a consistent synthesis of available information and the semi-objective, semi-quantitative and transparent assessment of indicators against a series of scientific and technical criteria (Ritz et al., 2009; Black et al., 2008). The logical sieve was shown to be a flexible decision-support tool to assist a range of stakeholders with different agenda in formulating a prioritised list of potential physical SQIs. This was explored further by members of the soil science and soils policy community at a project workshop. By emphasising the current key policy-related soil functions (i.e. provisioning and regulating), the logical sieve was used to generate scores which were then ranked to identify the most qualified SQIs. The process selected 18 candidate physical SQIs. This list was further filtered to move from the ‘narrative’ to a more ‘numerical’ approach, in order to test the robustness of the candidate SQIs through statistical analysis and modelling (Work Package 2). The remaining 7 physical SQIs were: depth of soil; soil water retention characteristics; packing density; visual soil assessment / evaluation; rate of erosion; sealing; and aggregate stability. For these SQIs to be included in a robust national soil monitoring programme, we investigated the uncertainty in their measurement; the spatial and temporal variability in the indicator as given by observed distributions; and the expected rate of change in the indicator. Whilst a baseline is needed (i.e. the current state of soil), it is the rate of change in soil properties and the implications of that change in terms of soil processes and functioning that are key to effective soil monitoring. Where empirical evidence was available, power analysis was used to understand the variability of indicators as given by the observed distributions. This process determines the ability to detect a particular change in the SQI at a particular confidence level, given the ‘noise’ or variability in the data (i.e. a particular power to detect a change of ‘X’ at a confidence level of ‘Y%’ would require ‘N’ samples). However, the evidence base for analysing the candidate SQIs is poor: data are limited in spatial and temporal extent for England and Wales, in terms of a) the degree (magnitude) of change in the SQI which significantly affects soil processes and functions (i.e. ‘meaningful change’), and b) the change in the SQI that is detectable (i.e. what sample size is needed to detect the meaningful signal from the variability or noise in the signal). This constrains the design and implementation of a scientifically and statistically rigorous and reliable soil monitoring programme. Evidence that is available suggests that what constitutes meaningful change will depend on soil type, current soil state, land use and the soil function under consideration. However, when we tested this by analysing detectable changes in packing density and soil depth (because data were available for these SQIs) over different land covers and soil types, no relationships were found. Schipper and Sparling (2000) identify the challenge: “a standardised methodology may not be appropriate to apply across contrasting soils and land uses. However, it is not practical to optimise sampling and analytical techniques for each soil and land use for extensive sampling on a national scale”. Despite the paucity in data, all seven SQIs have direct relevance to current and likely future soil and environmental policy, because they can be related (qualitatively) to soil processes, soil functions and delivery of ecosystem goods and services. Even so, meaningful and detectable changes in physical SQIs may be out of time with any soil policy change and it is not usually possible to link particular changes in SQIs to particular policy activities. This presents challenges in ascertaining trends that can feed into policy development or be used to gauge the effectiveness of soil protection policies (Work Package 3). Of the seven candidate physical SQIs identified, soil depth and surface sealing are regarded by many as indicators of soil quantity rather than quality. Visual soil evaluation is currently not suited to soil monitoring in the strictest sense, as its semi-qualitative basis cannot be analysed statistically. Also, few data exist on how visual evaluation scores relate to soil functions. However, some studies have begun to investigate how VSE might be moved to a more quantified scale and the method has some potential as a low cost field technique to assess soil condition. Packing density requires data on bulk density and clay content, both of which are highly variable, so compounding the error term associated with this physical SQI. More evidence is needed to show how ‘meaningful’ change in aggregate stability affects soil processes and thus soil functions (for example, using the limited data available, an equivocal relationship was found with water regulation / runoff generation). The analysis of available data has given promising results regarding the prediction of soil water retention characteristics and packing density from relatively easy to measure soil properties (bulk density, texture and organic C) using pedotransfer functions. Expanding the evidence base is possible with the development of rapid, cost-effective techniques such as NIR sensors to measure soil properties. Defra project SP1303 (Brazier et al., 2012) used power analyses to estimate the number of monitoring locations required to detect a statistically significant change in soil erosion rate on cultivated land. However, what constitutes a meaningful change in erosion rates still requires data on the impacts of erosion on soil functions. Priority cannot be given amongst the seven SQIs, because the evidence base for each varies in its robustness and extent. Lack of data (including uncertainty in measurement and variability in observed distributions) applies to individual SQIs; attempts at integrating more than one SQI (including physical, biological and chemical SQIs) to improve associations between soil properties and processes / functions are only likely to propagate errors. Whether existing monitoring programmes can be adapted to incorporate additional measurement of physical SQIs was explored. We considered options where one or more of the candidate physical SQIs might be implemented into soil monitoring programmes (e.g. as a new national monitoring scheme; as part of the Countryside Survey; and as part of the National Soil Inventory). The challenge is to decide whether carrying out soil monitoring that is not statistically robust is still valuable in answering questions regarding current and future soil quality. The relationship between physical (and other) SQIs, soil processes and soil functions is complex, as is how this influences ecosystem services’ delivery. Important gaps remain in even the realisation of a conceptual model for these inter-relationships, let alone their quantification. There is also a question of whether individual quantitative SQIs can be related to ecosystem services, given the number of variables

    Similar works