Development of a multi-directional manoeuvre for unified handling qualities investigation

Abstract

A slalom and alignment tracking manoeuvre was developed for multi-directional handling qualities analysis of large transport aircraft in simulation environments. The manoeuvre is defined and scaled as a function of aircraft characteristics, flight conditions using a simple set of mathematical models. Throughout the manoeuvre, the trajectory and overall performances are monitored at a set of gross position and alignment control checkpoints methodically distributed and sized to buoy the task and allow handling qualities analysis based on Cooper Harper Ratings and quantitative data analysis. Initial tests have shown that the manoeuvre sizing method led to feasible manoeuvres at multiple points of the flight envelope of a large civil transport aircraft. The manoeuvre capability to highlight desirable and undesirable handling qualities was also highlighted based on the initial findings for a couple of commercial large transport aircraft, a high aspect ratio wing and in-flight folding wingtip aircraft concepts. The relevance and applicability of the manoeuvre for multi-directional studies are discussed and compared against a more conventional offset landing manoeuvre. Finally, the potential use of the manoeuvre for different aircraft type and test flight is also suggested based on augmented reality technology

    Similar works