Anomaly detection of aircraft engine in FDR (flight data recorder) data

Abstract

This paper deals with detection of anomalous behaviour of aircraft engines in FDR (flight data recorder) data to improve airline maintenance operations. To this end, each FDR data that records different flight patterns is first sampled at a fixed time interval starting at the take-off phase, in order to map each FDR data into comparable data space. Next, the parameters related to the aircraft engine are only selected from the sampled FDR data. In this analysis, the feature points are chosen as the mean value of each parameter within the sampling interval. For each FDR data, the feature vector is then formed by arranging all feature points. The proposed method compares the feature vectors of all FDR data and detects an FDR data in which the abnormal behaviour of the aircraft engine is recorded. The clustering algorithm called DBSCAN (density-based spatial clustering of applications with noise) is applied for this purpose. In this paper, the proposed method is tested using realistic FDR data provided by NASA's open database. The results indicate that the proposed method can be used to automatically identify an FDR data in which the abnormal behaviour of the aircraft engine is recorded from a large amount of FDR data. Accordingly, it can be utilized for a high-level diagnosis of engine failure in airline maintenance operations

    Similar works