Some of the physical properties of the main elements of interest in
high temperature technology are reviewed. Some general trends emerge
when these properties are viewed as a function of melting point, but there
are a few notable exceptions. Titanium, zirconium, niobium and tantalum
all have disappointingly low moduli; chromium is excellent in many ways,
but has a limited ductility at lower temperatures; molybdenum oxidises
catastrophically above about 700° C, and niobium suffers from severe
oxygen embrittlement. Beryllium and carbon (in the graphitic form) both
stand out as exceptional materials, both have very low densities, beryllium
a very high modulus but an unfortunately low ductility, while graphite has
a relatively low strength at the lower temperatures, although at temperatures
of 2000° C and above it emerges as a quite exceptional (and probably as the
ultimate) high temperature material. Some of the fundamental factors
involved in high temperature material development are examined, in the
light, particularly, of past progress with the nickel alloys. If a similar
progress can be achieved with other base elements then a considerable
margin still remains to be exploited. Protection from oxidation at high
temperatures is evidently a factor of major concern, not only with metals,
but with graphite also. Successful coatings are therefore of high importance and the questions they raise, such as bonding, differential thermal expansion,
and so on, represent aspects of an even wider class covered by the term
“composite structures". Such structures appear to offer the only serious
solution to many high temperature requirements, and their design,
construction and utilization has created a whole series of new exercises
in materials assessment. Matters have become so complex, that a very
radical and fundamental reassessment is required if we are to change, in
any very significant way, the wasteful and ad hoc methods which characterise
so much of present-day materials engineering