Enhanced ceria nanoflakes using graphene oxide as a sacrificial template for CO oxidation and dry reforming of methane

Abstract

© 2018 The Authors The development of novel fabrication methods to produce ceria catalysts with good high-temperature stability is critical for their implementation across a range of different applications. Herein, graphene oxide flakes are used as a sacrificial template in the synthesis of ceria particles to replicate the graphene oxide's two-dimensionality. While performing the synthesis without graphene oxide results in large agglomerations of ceria crystallites, the addition of graphene oxide during the synthesis results in ceria nanoflakes (400 °C) which results in improved catalytic performance for the oxidation of carbon monoxide. This resistance versus sintering has also a beneficial effect when ceria flakes are used as catalytic support of nickel particles. Improved metal dispersion and high metal-support interaction leads to lower sintering during the dry reforming of methane than similarly prepared un-templated ceria nickel catalysts. These results demonstrate the advantage of using graphene oxide as a sacrificial template for the production of sintering-resistant catalysts with good catalytic performance at high temperatures

    Similar works