Geometry of mutation classes of rank 3 quivers

Abstract

We present a geometric realization for all mutation classes of quivers of rank 3 with real weights. This realization is via linear reflection groups for acyclic mutation classes and via groups generated by π-rotations for the cyclic ones. The geometric behavior of the model turns out to be controlled by the Markov constant p2 + q2 + r 2 − pqr, where p, q,r are the weights of arrows in a quiver. We also classify skew-symmetric mutation-finite real 3×3 matrices and explore the structure of acyclic representatives in finite and infinite mutation classes

    Similar works