Estimating the Relative Speed of RF Jammers in VANETs

Abstract

Vehicular Ad Hoc Networks (VANETs) aim at enhancing road safety and providing a comfortable driving environment by delivering early warning and infotainment messages to the drivers. Jamming attacks, however, pose a significant threat to their performance. In this paper, we propose a novel Relative Speed Estimation Algorithm (RSEA) of a moving vehicle that approaches a transmitter ()-receiver () pair that interferes with their radio frequency (RF) communication by conducting a denial of service (DoS) attack. Our scheme is completely passive and uses a pilot-based received signal without hardware or computational cost to, firstly, estimate the combined channel between the transmitter-receiver and jammer-receiver and, secondly, to estimate the jamming signal and the relative speed between the jammer-receiver using the RF Doppler shift. Moreover, the relative speed metric exploits the angle of projection (AOP) of the speed vector of the jammer in the axis of its motion in order to form a two-dimensional representation of the geographical area. Our approach can effectively be applied for any form of the jamming signal and is proven to have quite accurate performance, with a mean absolute error (MAE) value of approximately compared to the optimal zero MAE value under different jamming attack scenarios

    Similar works