research

Intelligent composite layup by the application of low cost tracking and projection technologies

Abstract

Hand layup is still the dominant forming process for the creation of the widest range of complex geometry and mixed material composite parts. However, this process is still poorly understood and informed, limiting productivity. This paper seeks to address this issue by proposing a novel and low cost system enabling a laminator to be guided in real-time, based on a predetermined instruction set, thus improving the standardisation of produced components. Within this paper the current methodologies are critiqued and future trends are predicted, prior to introducing the required input and outputs, and developing the implemented system. As a demonstrator a U-Shaped component typical of the complex geometry found in many difficult to manufacture composite parts was chosen, and its drapeability assessed by the use of a kinematic drape simulation tool. An experienced laminator's knowledgebase was then used to divide the tool into a finite number of features, with layup conducted by projecting and sequentially highlighting target features while tracking a laminator's hand movements across the ply. The system has been implemented with affordable hardware and demonstrates tangible benefits in comparison to currently employed laser-based systems. It has shown remarkable success to date, with rapid Technology Readiness Level advancement. This is a major stepping stone towards augmenting manual labour, with further benefits including more appropriate automation

    Similar works