research

Rigid Body Motion Estimation based on the Lagrange-d'Alembert Principle

Abstract

Stable estimation of rigid body pose and velocities from noisy measurements, without any knowledge of the dynamics model, is treated using the Lagrange-d'Alembert principle from variational mechanics. With body-fixed optical and inertial sensor measurements, a Lagrangian is obtained as the difference between a kinetic energy-like term that is quadratic in velocity estimation error and the sum of two artificial potential functions; one obtained from a generalization of Wahba's function for attitude estimation and another which is quadratic in the position estimate error. An additional dissipation term that is linear in the velocity estimation error is introduced, and the Lagrange-d'Alembert principle is applied to the Lagrangian with this dissipation. This estimation scheme is discretized using discrete variational mechanics. The presented pose estimator requires optical measurements of at least three inertially fixed landmarks or beacons in order to estimate instantaneous pose. The discrete estimation scheme can also estimate velocities from such optical measurements. In the presence of bounded measurement noise in the vector measurements, numerical simulations show that the estimated states converge to a bounded neighborhood of the actual states.Comment: My earlier submitted manuscript (arXiv:1508.07671), is an extended version of this work, containing detailed proofs and more elaborated numerical simulations, currently under review in Automatica. This paper will be cited in the extended journal version (arXiv:1508.07671) upon publicatio

    Similar works

    Full text

    thumbnail-image

    Available Versions