Modern power systems have begun integrating synchrophasor technologies into
part of daily operations. Given the amount of solutions offered and the
maturity rate of application development it is not a matter of "if" but a
matter of "when" in regards to these technologies becoming ubiquitous in
control centers around the world. While the benefits are numerous, the
functionality of operator-level applications can easily be nullified by
injection of deceptive data signals disguised as genuine measurements. Such
deceptive action is a common precursor to nefarious, often malicious activity.
A correlation coefficient characterization and machine learning methodology are
proposed to detect and identify injection of spoofed data signals. The proposed
method utilizes statistical relationships intrinsic to power system parameters,
which are quantified and presented. Several spoofing schemes have been
developed to qualitatively and quantitatively demonstrate detection
capabilities.Comment: 8 pages, 4 figures, submitted to IEEE Transaction