research

Least Squares Shadowing method for sensitivity analysis of differential equations

Abstract

For a parameterized hyperbolic system dudt=f(u,s)\frac{du}{dt}=f(u,s) the derivative of the ergodic average J=limT1T0TJ(u(t),s)\langle J \rangle = \lim_{T \to \infty}\frac{1}{T}\int_0^T J(u(t),s) to the parameter ss can be computed via the Least Squares Shadowing algorithm (LSS). We assume that the sytem is ergodic which means that J\langle J \rangle depends only on ss (not on the initial condition of the hyperbolic system). After discretizing this continuous system using a fixed timestep, the algorithm solves a constrained least squares problem and, from the solution to this problem, computes the desired derivative dJds\frac{d\langle J \rangle}{ds}. The purpose of this paper is to prove that the value given by the LSS algorithm approaches the exact derivative when the discretization timestep goes to 00 and the timespan used to formulate the least squares problem grows to infinity.Comment: 21 pages, this article complements arXiv:1304.3635 and analyzes LSS for the case of continuous hyperbolic system

    Similar works