research

Drawing graphs with vertices and edges in convex position

Abstract

A graph has strong convex dimension 22, if it admits a straight-line drawing in the plane such that its vertices are in convex position and the midpoints of its edges are also in convex position. Halman, Onn, and Rothblum conjectured that graphs of strong convex dimension 22 are planar and therefore have at most 3n63n-6 edges. We prove that all such graphs have at most 2n32n-3 edges while on the other hand we present a class of non-planar graphs of strong convex dimension 22. We also give lower bounds on the maximum number of edges a graph of strong convex dimension 22 can have and discuss variants of this graph class. We apply our results to questions about large convexly independent sets in Minkowski sums of planar point sets, that have been of interest in recent years.Comment: 15 pages, 12 figures, improved expositio

    Similar works