Tracing molecular hydrogen content with carbon monoxide in low-metallicity
galaxies has been exceedingly difficult. Here we present a new effort, with
IRAM 30-m observations of 12CO(1-0) of a sample of 8 dwarf galaxies having
oxygen abundances ranging from 12+logO/H=7.7 to 8.4. CO emission is detected in
all galaxies, including the most metal-poor galaxy of our sample (0.1 Zsun); to
our knowledge this is the largest number of 12CO(1-0) detections ever reported
for galaxies with 12+logO/H<=8 (0.2 Zsun) outside the Local Group. We calculate
stellar masses (Mstar) and star-formation rates (SFRs), and analyze our results
by combining our observations with galaxy samples from the literature.
Extending previous results for a correlation of the molecular gas depletion
time, tau(dep), with Mstar and specific SFR (sSFR), we find a variation in
tau(dep) of a factor of 200 or more (from <50 Myr to 10 Gyr) over a spread of
1000 in sSFR and Mstar. We exploit the variation of tau(dep) to constrain the
CO-to-H2 mass conversion factor alpha(CO) at low metallicity, and assuming a
power-law variation find alpha(CO) \propto (Z/Zsun)^1.9, similar to results
based on dust continuum measurements compared with gas mass. By including HI
measurements, we show that the fraction of total gas mass relative to the
baryonic mass is higher in galaxies that are metal poor, of low mass, and of
high sSFR. Finally, comparisons of the data with star-formation models of the
molecular gas phases suggest that, at metallicities Z/Zsun<=0.2, there are some
discrepancies with model predictions.Comment: 18 pages, 15 figures, accepted for publication in A&