research

Minimum Number of Probes for Brain Dynamics Observability

Abstract

In this paper, we address the problem of placing sensor probes in the brain such that the system dynamics' are generically observable. The system dynamics whose states can encode for instance the fire-rating of the neurons or their ensemble following a neural-topological (structural) approach, and the sensors are assumed to be dedicated, i.e., can only measure a state at each time. Even though the mathematical description of brain dynamics is (yet) to be discovered, we build on its observed fractal characteristics and assume that the model of the brain activity satisfies fractional-order dynamics. Although the sensor placement explored in this paper is particularly considering the observability of brain dynamics, the proposed methodology applies to any fractional-order linear system. Thus, the main contribution of this paper is to show how to place the minimum number of dedicated sensors, i.e., sensors measuring only a state variable, to ensure generic observability in discrete-time fractional-order systems for a specified finite interval of time. Finally, an illustrative example of the main results is provided using electroencephalogram (EEG) data.Comment: arXiv admin note: text overlap with arXiv:1507.0720

    Similar works

    Full text

    thumbnail-image

    Available Versions