CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Damage of saturated rocks undergoing triaxial deformation using complex electrical conductivity measurements: Experimental results
Authors
J.B. Gómez
K. Hayashi
+4 more
P.G. Meredith
P.R. Sammonds
P.W.J. Glover
S.A.F. Murrell
Publication date
1 January 1997
Publisher
Elsevier BV
Doi
Abstract
The frequency dependent complex electrical conductivity of brine saturated rocks is extremely sensitive to changes in the volume, connectivity, orientation, and surface topography of pores and cracks. We have made triaxial deformation experiments on sandstone specimens saturated with distilled water. Experiments were carried out for several values of confining pressure, and in both drained and undrained regimes. During the deformation the full complex (in-phase and out-of-phase) electrical parameter set was measured (i.e. conductivity, resistivity, permittivity etc.) for 50 frequencies from 20 Hz to 1 MHz. Only the data at 1 kHz will be discussed here. This data tracks how the rock undergoes crack closure, followed by dilatancy, crack linking, and finally failure, as axial strain is increased. The data indicates well how early the formation of new cracks begins, showing that the quasi-linear portion of the stress-strain curve for triaxial deformation of saturated rocks does not represent truly elastic behaviour, but represents the combined effects of crack closure perpendicular to the strain axis and the formation of tensile cracks parallel to the strain axis. The electrical data has also been used to derive an electrical-equivalent change in porosity, and to examine the way that the cementation exponent and the tortuosity of the pore and crack network change during deformation. © 1997 Published by Elsevier Science Ltd
Similar works
Full text
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1016%2Fs0079-1946%...
Last time updated on 30/11/2020