Renewables will soon dominate energy production in our electric power system.
And yet, how to integrate renewable energy into the grid and the market is
still a subject of major debate. Decentral Smart Grid Control (DSGC) was
recently proposed as a robust and decentralized approach to balance supply and
demand and to guarantee a grid operation that is both economically and
dynamically feasible. Here, we analyze the impact of network topology by
assessing the stability of essential network motifs using both linear stability
analysis and basin volume for delay systems. Our results indicate that if
frequency measurements are averaged over sufficiently large time intervals,
DSGC enhances the stability of extended power grid systems. We further
investigate whether DSGC supports centralized and/or decentralized power
production and find it to be applicable to both. However, our results on
cycle-like systems suggest that DSGC favors systems with decentralized
production. Here, lower line capacities and lower averaging times are required
compared to those with centralized production.Comment: 21 pages, 6 figures This is a pre-print of a manuscript submitted to
The European Physical Journal. The final publication is available at Springer
via http://dx.doi.org/10.1140/epjst/e2015-50136-