research

Purification of Lindblad dynamics, geometry of mixed states and geometric phases

Abstract

We propose a nonlinear Schr\"odinger equation in a Hilbert space enlarged with an ancilla such that the partial trace of its solution obeys to the Lindblad equation of an open quantum system. The dynamics involved by this nonlinear Schr\"odinger equation constitutes then a purification of the Lindbladian dynamics. This nonlinear equation is compared with other Schr\"odinger like equations appearing in the theory of open systems. We study the (non adiabatic) geometric phases involved by this purification and show that our theory unifies several definitions of geometric phases for open systems which have been previously proposed. We study the geometry involved by this purification and show that it is a complicated geometric structure related to an higher gauge theory, i.e. a categorical bibundle with a connective structure

    Similar works