research

A class of high-order Runge-Kutta-Chebyshev stability polynomials

Abstract

The analytic form of a new class of factorized Runge-Kutta-Chebyshev (FRKC) stability polynomials of arbitrary order NN is presented. Roots of FRKC stability polynomials of degree L=MNL=MN are used to construct explicit schemes comprising LL forward Euler stages with internal stability ensured through a sequencing algorithm which limits the internal amplification factors to L2\sim L^2. The associated stability domain scales as M2M^2 along the real axis. Marginally stable real-valued points on the interior of the stability domain are removed via a prescribed damping procedure. By construction, FRKC schemes meet all linear order conditions; for nonlinear problems at orders above 2, complex splitting or Butcher series composition methods are required. Linear order conditions of the FRKC stability polynomials are verified at orders 2, 4, and 6 in numerical experiments. Comparative studies with existing methods show the second-order unsplit FRKC2 scheme and higher order (4 and 6) split FRKCs schemes are efficient for large moderately stiff problems.Comment: 24 pages, 5 figures. Accepted for publication in Journal of Computational Physics, 22 Jul 2015. Revise

    Similar works