Composite adaptive control (CAC) that integrates direct and indirect adaptive
control techniques can achieve smaller tracking errors and faster parameter
convergence compared with direct and indirect adaptive control techniques.
However, the condition of persistent excitation (PE) still has to be satisfied
to guarantee parameter convergence in CAC. This paper proposes a novel model
reference composite learning control (MRCLC) strategy for a class of affine
nonlinear systems with parametric uncertainties to guarantee parameter
convergence without the PE condition. In the composite learning, an integral
during a moving-time window is utilized to construct a prediction error, a
linear filter is applied to alleviate the derivation of plant states, and both
the tracking error and the prediction error are applied to update parametric
estimates. It is proven that the closed-loop system achieves global
exponential-like stability under interval excitation rather than PE of
regression functions. The effectiveness of the proposed MRCLC has been verified
by the application to an inverted pendulum control problem.Comment: 5 pages, 6 figures, conference submissio