research

The emergence of 4-cycles in polynomial maps over the extended integers

Abstract

Let f(x)∈Z[x]f(x) \in \mathbb{Z}[x]; for each integer α\alpha it is interesting to consider the number of iterates nαn_{\alpha}, if possible, needed to satisfy fnα(α)=αf^{n_{\alpha}}(\alpha) = \alpha. The sets {α,f(α),…,fnα−1(α),α}\{\alpha, f(\alpha), \ldots, f^{n_{\alpha} - 1}(\alpha), \alpha\} generated by the iterates of ff are called cycles. For Z[x]\mathbb{Z}[x] it is known that cycles of length 1 and 2 occur, and no others. While much is known for extensions to number fields, we concentrate on extending Z\mathbb{Z} by adjoining reciprocals of primes. Let Z[1/p1,…,1/pn]\mathbb{Z}[1/p_1, \ldots, 1/p_n] denote Z\mathbb{Z} extended by adding in the reciprocals of the nn primes p1,…,pnp_1, \ldots, p_n and all their products and powers with each other and the elements of Z\mathbb{Z}. Interestingly, cycles of length 4, called 4-cycles, emerge for polynomials in Z[1/p1,…,1/pn][x]\mathbb{Z}\left[1/p_1, \ldots, 1/p_n\right][x] under the appropriate conditions. The problem of finding criteria under which 4-cycles emerge is equivalent to determining how often a sum of four terms is zero, where the terms are ±1\pm 1 times a product of elements from the list of nn primes. We investigate conditions on sets of primes under which 4-cycles emerge. We characterize when 4-cycles emerge if the set has one or two primes, and (assuming a generalization of the ABC conjecture) find conditions on sets of primes guaranteed not to cause 4-cycles to emerge.Comment: 14 pages, 1 figur

    Similar works

    Full text

    thumbnail-image

    Available Versions