research

A note on the probability of generating alternating or symmetric groups

Abstract

We improve on recent estimates for the probability of generating the alternating and symmetric groups Alt(n)\mathrm{Alt}(n) and Sym(n)\mathrm{Sym}(n). In particular we find the sharp lower bound, if the probability is given by a quadratic in n1n^{-1}. This leads to improved bounds on the largest number h(Alt(n))h(\mathrm{Alt}(n)) such that a direct product of h(Alt(n))h(\mathrm{Alt}(n)) copies of Alt(n)\mathrm{Alt}(n) can be generated by two elements

    Similar works