Unconventional Superconductivity in the Layered Iron Germanide YFe(2)Ge(2).

Abstract

The iron-based intermetallic YFe_{2}Ge_{2} stands out among transition metal compounds for its high Sommerfeld coefficient of the order of 100  mJ/(mol K^{2}), which signals strong electronic correlations. A new generation of high quality samples of YFe_{2}Ge_{2} show superconducting transition anomalies below 1.8 K in thermodynamic, magnetic, and transport measurements, establishing that superconductivity is intrinsic in this layered iron compound outside the known superconducting iron pnictide or chalcogenide families. The Fermi surface geometry of YFe_{2}Ge_{2} resembles that of KFe_{2}As_{2} in the high pressure collapsed tetragonal phase, in which superconductivity at temperatures as high as 10 K has recently been reported, suggesting an underlying connection between the two systems.The work was supported by the EPSRC of the UK and by Trinity College. Supporting data can be found at https://www.repository.cam.ac.uk/handle/1810/253875.This is the author accepted manuscript. The final version is available from the American Physical Society via http://dx.doi.org/10.1103/PhysRevLett.116.12700

    Similar works