Far-field Wireless Power Transfer (WPT) and Simultaneous Wireless Information
and Power Transfer (SWIPT) have attracted significant attention in the RF and
communication communities. Despite the rapid progress, the problem of waveform
design to enhance the output DC power of wireless energy harvester has received
limited attention so far. In this paper, we bridge communication and RF design
and derive novel multisine waveforms for multi-antenna wireless power transfer.
The waveforms are adaptive to the channel state information and result from a
posynomial maximization problem that originates from the non-linearity of the
energy harvester. They are shown through realistic simulations to provide
significant gains (in terms of harvested DC power) over state-of-the-art
waveforms under a fixed transmit power constraint.Comment: paper to be presented at IEEE International Symposium on Wireless
Communication Systems (ISWCS 2015