The quantum coherent coupling of completely different degrees of freedom is a
challenging path towards creating new functionalities for quantum electronics.
Usually the antagonistic coupling between spins of magnetic impurities and
superconductivity leads to the destruction of the superconducting order. Here
we show that a localized classical spin of an iron atom immersed in a
superconducting condensate can give rise to new kind of long range coherent
magnetic quantum state. In addition to the well-known Shiba bound state present
on top of an impurity we reveal the existence of a star shaped pattern which
extends as far as 12 nm from the impurity location. This large spatial
dispersion turns out to be related, in a non-trivial way, to the
superconducting coherence length. Inside star branches we observed short scale
interference fringes with a particle-hole asymmetry. Our theoretical approach
captures these features and relates them to the electronic band structure and
the Fermi wave length of the superconductor. The discovery of a directional
long range effect implies that distant magnetic atoms could coherently interact
leading to new topological superconducting phases with fascinating properties