We investigate the feasibility of four-connected nets as hypothetical zinc
cyanide polymorphs, as well as their thermal and mechanical properties, through
quantum chemical calculations and molecular dynamics simulations. We confirm
the metastability of the two porous phases recently discovered experimentally
(Lapidus, S. H.; et al. J. Am. Chem. Soc. 2013, 135, 7621-7628), suggest the
existence of seven novel porous phases of Zn(CN)2, and show that isotropic
negative thermal expansion is a common occurrence among all members of this
family of materials, with thermal expansion coefficients close to that of the
dense dia-c phase. In constrast, we find a wide variety in the mechanical
behavior of these porous structures with framework-dependent anisotropic
compressibilities. All porous structures, however, show pressure-induced
softening leading to a structural transition at modest pressure.Comment: Chem. Mater. 201