research

Kondo effect in three-dimensional Dirac and Weyl systems

Abstract

Magnetic impurities in three-dimensional Dirac and Weyl systems are shown to exhibit a fascinatingly diverse range of Kondo physics, with distinctive experimental spectroscopic signatures. When the Fermi level is precisely at the Dirac point, Dirac semimetals are in fact unlikely candidates for a Kondo effect due to the pseudogapped density of states. However, the influence of a nearby quantum critical point leads to the unconventional evolution of Kondo physics for even tiny deviations in the chemical potential. Separating the degenerate Dirac nodes produces a Weyl phase: time-reversal symmetry-breaking precludes Kondo due to an effective impurity magnetic field, but different Kondo variants are accessible in time-reversal invariant Weyl systems.Comment: 4+ pages, 2 figure

    Similar works