Layered transition metal dichalcogenides (TMDs) are ideal systems for
exploring the effects of dimensionality on correlated electronic phases such as
charge density wave (CDW) order and superconductivity. In bulk NbSe2 a CDW sets
in at TCDW = 33 K and superconductivity sets in at Tc = 7.2 K. Below Tc these
electronic states coexist but their microscopic formation mechanisms remain
controversial. Here we present an electronic characterization study of a single
2D layer of NbSe2 by means of low temperature scanning tunneling
microscopy/spectroscopy (STM/STS), angle-resolved photoemission spectroscopy
(ARPES), and electrical transport measurements. We demonstrate that 3x3 CDW
order in NbSe2 remains intact in 2D. Superconductivity also still remains in
the 2D limit, but its onset temperature is depressed to 1.9 K. Our STS
measurements at 5 K reveal a CDW gap of {\Delta} = 4 meV at the Fermi energy,
which is accessible via STS due to the removal of bands crossing the Fermi
level for a single layer. Our observations are consistent with the simplified
(compared to bulk) electronic structure of single-layer NbSe2, thus providing
new insight into CDW formation and superconductivity in this model
strongly-correlated system.Comment: Nature Physics (2015), DOI:10.1038/nphys352