research

Temperature-dependent thermal conductivity and diffusivity of a Mg-doped insulating β\beta-Ga2O3\mathrm{Ga_2O_3} single crystal along [100], [010] and [001]

Abstract

The monoclinic crystal structure of β\beta-Ga2O3\mathrm{Ga_2O_3} leads to significant anisotropy of the thermal properties. The 2ω\omega-method is used to measure the thermal diffusivity DD in [010] and [001] direction respectively and to determine the thermal conductivity values λ\lambda of the [100], [010] and [001] direction from the same insulating Mg doped β\beta-Ga2O3\mathrm{Ga_2O_3} single crystal. We detect a temperature independent anisotropy factor of both the thermal diffusivity and conductivity values of D[010]/D[001]=λ[010]/λ[001]=1.4±0.1D_{[010]}/D_{[001]}=\lambda_{[010]}/\lambda_{[001]}=1.4\pm 0.1. The temperature-dependence is in accord with phonon-phonon-Umklapp scattering processes from 300 K down to 150 K. Below 150 K point-defect-scattering lowers the estimated phonon-phonon-Umklapp-scattering values.Comment: 11 pages, 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions