research

Bielectron vortices in two-dimensional Dirac semimetals

Abstract

Searching for new states of matter and unusual quasiparticles in emerging materials and especially low-dimensional systems is one of the major trends in contemporary condensed matter physics. Dirac materials, which host quasiparticles which are described by ultrarelativistic Dirac-like equations, are of a significant current interest from both a fundamental and applied physics perspective. Here we show that a pair of two-dimensional massless Dirac-Weyl fermions can form a bound state independently of the sign of the inter-particle interaction potential, as long as this potential decays at large distances faster than Kepler's inverse distance law. This leads to the emergence of a new type of energetically-favourable quasiparticle: bielectron vortices, which are double-charged and reside at zero-energy. Their bosonic nature allows for condensation and may give rise to Majorana physics without invoking a superconductor. These novel quasiparticles arguably explain a range of poorly understood experiments in gated graphene structures at low doping.Comment: 9 pages, 2 figure

    Similar works