The initial mass function (IMF), binary fraction and distributions of binary
parameters (mass ratios, separations and eccentricities) are indispensable
input for simulations of stellar populations. It is often claimed that these
are poorly constrained significantly affecting evolutionary predictions.
Recently, dedicated observing campaigns provided new constraints on the initial
conditions for massive stars. Findings include a larger close binary fraction
and a stronger preference for very tight systems. We investigate the impact on
the predicted merger rates of neutron stars and black holes.
Despite the changes with previous assumptions, we only find an increase of
less than a factor 2 (insignificant compared with evolutionary uncertainties of
typically a factor 10-100). We further show that the uncertainties in the new
initial binary properties do not significantly affect (within a factor of 2)
our predictions of double compact object merger rates. An exception is the
uncertainty in IMF (variations by a factor of 6 up and down). No significant
changes in the distributions of final component masses, mass ratios, chirp
masses and delay times are found.
We conclude that the predictions are, for practical purposes, robust against
uncertainties in the initial conditions concerning binary parameters with
exception of the IMF. This eliminates an important layer of the many uncertain
assumptions affecting the predictions of merger detection rates with the
gravitational wave detectors aLIGO/aVirgo.Comment: Accepted for publication in Ap